Abstract
Nature creates fascinating self-organized spatiotemporal patterns through the delicate control of reaction-diffusion dynamics. As the primary unit of cortical bone, osteon has concentric lamellar architecture, which plays a crucial role in the mechanical and physiological functions of bone. However, it remains a great challenge to fabricate the osteon-like structure in a natural self-organization way. Taking advantage of the nonequilibrium reaction in hydrogels, a simple mineralization strategy to closely mimic the formation of osteon in a mild physiological condition is developed. By constructing two reverse concentration gradients of ions from periphery to interior of cylindrical hydrogel, spatiotemporal self-organization of calcium phosphate in concentric rings is generated. It is noteworthy that minerals in different layers possess diverse contents and crystalline phases, which further guide the adhesion and spread of osteoblasts on these patterns, resembling the architecture and cytological behavior of osteon. Besides, theoretical data indicates the predominate role of ion concentrations and pH values of solution, in good accordance with experimental results. Independent of precise instruments, this lifelike method is easily obtained, cost-efficient, and effectively imitates the mineral deposition in osteon from a physiochemical view. The strategy may be expanded to develop other functional material patterns via spatiotemporal self-organization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.