Abstract
Crash hotspot identification (HSID) is an essential component of traffic management authorities’ efforts to improve safety and allocate limited resources. This paper presents a method for identifying hotspots using self-organizing maps (SOM). The SOM method was used to identify high-risk areas based on five commonly used HSID methods: crash frequency, equivalent property damage only, crash rate, empirical Bayes, and the societal risk-based method. Crashes on a major road in Iran were examined using the proposed method. Based on these criteria, high-risk locations were grouped into six clusters, which provided appropriate criteria for each location depending on the importance of the cluster. The findings show that the identification of crash hotspots tends to focus on areas with more crashes and deaths, demonstrating that the research methodology was appropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.