Abstract

This paper presents core technologies for a self-organized microoptical system (SELMOS) within optoelectronic computers; mass-productive fabrication processes of waveguide films and new types of self-organized lightwave networks (SOLNETs) for three-dimensional (3-D) optical wiring with optical Z-connections. Waveguide films are fabricated by the built-in mask method, which is reusable and can construct surface-normal mirrors/filters at one time within photolithographic accuracy. Beveled core edge walls are made by the tilted ultraviolet (UV) exposure through the built-in mask using a photodefinable material. Near- and far-field patterns reveal that the walls act as micromirrors for optical Z-connections. SOLNET is a network consisting of self-organized coupling waveguides between misaligned optical devices. The self-organization is generated in a photorefractive material by self-focusing of the two write beams from the two devices. Direct SOLNET, where wavelengths of the write beam and the signal beam are the same, is demonstrated using a laser diode. Reflective SOLNET, where one of the two write beams is replaced with a reflected write beam from the edge of the coupled device, realizes two-beam-writing SOLNET in a one-beam-writing configuration. It is especially effective when the coupled device cannot transmit write beams. The proof-of-concept is demonstrated both theoretically and experimentally. These results indicate a possibility to form 3-D optical wiring simply in SELMOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.