Abstract

The theory of a flux steady-state related to avalanche formation is presented for the simplest model of a sand pile within the framework of the Lorenz approach. The stationary values of sand velocity and sand pile slope are derived as functions of a control parameter (driven sand pile slope). The additive noise of above values are introduced for building a phase diagram, where the noise intensities determine both avalanche and non-avalanche domains, as well as mixed one. Corresponding to the SOC regime, the last domain is crucial to affect of the noise intensity of the vertical component of sand velocity and especially sand pile slope. To address to a self-similar behavior, a fractional feedback is used as an efficient ingredient of the modified Lorenz system. In the spirit of Edwards paradigm, an effective thermodynamics is introduced to determine a distribution over an avalanche ensemble with negative temperature. Steady-state behavior of the moving grains number, as well as non-extensive values of entropy and energy is studied in detail. The power law distribution over the avalanche size is described within a fractional Lorenz scheme, where the energy noise plays a crucial role. This distribution is shown to be a solution of both fractional and nonlinear Fokker–Planck equation. As a result, we obtain new relations between the exponent of the size distribution, fractal dimension of phase space, characteristic exponent of multiplicative noise, number of governing equations, dynamical exponents and non-extensivity parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.