Abstract

We observe multiple steplike jumps in a Dy-Fe-Ga-based ferrimagnetic alloy in its magnetic hysteresis curve at 2K. The observed jumps are found to have a stochastic character with respect to their magnitude and the field position, and the jumps do not correlate with the duration of the field. The distribution of jump size follows a power law variation indicating the scale invariance nature of the jumps. We have invoked a simple two-dimensional random bond Ising-type spin system to model the dynamics. Our computational model can qualitatively reproduce the jumps and their scale-invariant character. It also elucidates that the flipping of antiferromagnetically coupled Dy and Fe clusters is responsible for the observed jumps in the hysteresis loop. These features are described in terms of the self-organized criticality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.