Abstract
We study a simple model of spin network evolution motivated by the hypothesis that the emergence of classical spacetime from a discrete microscopic dynamics may be a self-organized critical process. Self-organized critical systems are statistical systems that naturally evolve without fine tuning to critical states in which correlation functions are scale invariant. We study several rules for evolution of frozen spin networks in which the spins labeling the edges evolve on a fixed graph. We find evidence for a set of rules which behaves analogously to sand pile models in which a critical state emerges without fine tuning, in which some correlation functions become scale invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.