Abstract
The goal of polyhomeostatic control is to achieve a certain target distribution of behaviors, in contrast to homeostatic regulation, which aims at stabilizing a steady-state dynamical state. We consider polyhomeostasis for individual and networks of firing-rate neurons, adapting to achieve target distributions of firing rates maximizing information entropy. We show that any finite polyhomeostatic adaption rate destroys all attractors in Hopfield-like network setups, leading to intermittently bursting behavior and self-organized chaos. The importance of polyhomeostasis to adapting behavior in general is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.