Abstract

In the present work, we reveal a novel finding, that is, self-assembled grain boundary precipitates for realizing the magnetic-field-induced metamagnetic transition by employing low melting point metal in materials. This strategy has been experimentally verified in a well-established ferrimagnetic compound Mn2Sb by doping the bismuth (Bi) element with a low melting point of just 271.3°C. Bi solidifies later than the Mn2(Sb,Bi) main phase in (Mn2Sb)1-xBix system (the melting point of ~948°C for Mn2Sb), and aggregates spontaneously along the grain boundaries, forming Bi-rich grain boundary precipitates to coat main phase grains. This is very similar to the Nd-rich grain boundary phase in Nd-Fe-B permanent magnets. The fraction of Bi-rich grain boundary phase can be controlled by Bi-content. As a result, the magnetic field induced steep magnetoelastic transition from antiferromagnetic to ferrimagnetic is achieved in (Mn2Sb)0.89Bi0.11 alloy with giant multiple functional properties in Bi-doped Mn2Sb. Especially, the magnetic entropy change maximum nearly quadruples when Bi-doping increases from 0.03 to 0.11. Giant negative magnetoresistance of more than 65% under μ0∆H = 0–5 T, and magnetostrain of ~1802 ppm under μ0H = 8.5 T are obtained in (Mn2Sb)0.89Bi0.11. It should pave a way to achieve the magnetic transition and enhance the magnetoresponsive effects in designing similar coherent materials by employing low melting point metal doping to form the dual-phase heterogeneous structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.