Abstract

The aggregation of TiO2 microparticles followed by self-organization of a cluster of agglomerates at convective cells formation in a thin layer of water is studied experimentally. Complex behavior of the cluster is considered at a strong system deviation from equilibrium as a result of local heating. A periodic character of the behavior of a cluster of particles has been detected. Particle sizes and the number of cells change cyclically over time. Hexagonal convective cells have a very small size of about 50–100 μm (5–10 times less than the layer height). Data on the cluster occurrence and dissociation over time is provided. It is shown that when the particle diameter and the diameter of coagulated particles reach the maximum (the maximum diameter of the cluster corresponds to 100–130 μm, and the maximum diameter of the aggregate is 20–30 μm), the convective cells lose stability and the cluster partially disintegrates. Self-organization control using local heating can be effectively applied to create new materials, as well as in biology and medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.