Abstract

Novel dipeptide-grafted polymeric nanoparticles were prepared by grafting the dipeptide (Gly-Gly) to a block copolymer backbone, comprised of styrene-alt-(maleic anhydride) and styrene. In aqueous solution PSt 130-b-P(St-alt-MAn) 58-g-GlyGly 26 formed stable dispersed spherical aggregates of ca. 75 nm. The critical micelle concentration for the dipeptide-grafted block copolymer self-aggregates was 6.3 × 10 −3 mg mL −1. The zeta-potential of the aggregates was estimated experimentally. The dispersed polymer nanoparticles effectively self-organized to form stable nanoparticle thin films on hydrophobic solid surfaces, such as octadecyltrichlorosilane modified glass (OTS-G). As the ionic strength and temperature of the polymer suspension increased the surface coverage of the nanoparticle film increased and its hydrophobicity (water contact angle) decreased. Significantly less bovine serum albumin (BSA) adsorbed to nanoparticles modified surfaces with compared OTS-G surfaces. Diglycine grafted polymer nanoparticles have the potential to be used as a novel platform to study protein–protein interactions and to control fouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.