Abstract
Self-organization in small systems of particles with simple dynamic laws has been simulated. The purpose of this work was to investigate self-organization in small systems of charged particles under the influence of an electric field where we could follow individual particles. There are positively and negatively charged particles. The intention is to look for pattern formation as the system evolves. Three electric fields and the particle-to-particle interactions were utilized to provide the forces. The three electric fields were a constant field, a ramp field, and an oscillatory field. The final system states for various electric fields are presented. For the two kinds of particles simulated, like particles have a repulsive force, while unlike particles have an attractive force. Initially, the particles are randomly distributed in a two dimensional square bounded region, and then allowed to dynamically interact for a number of iterations. Using the inverse square law force, modified at short distances, most cases resulted in equilibrium with the particles of opposite polarity paired up. Since this was a state of equilibrium no more movement occurred. The results of the experiments are presented in graphical format. The main conclusions are that this model can be used to study small dynamic systems, and that the presence of an external electric field does not significantly modify the final configuration but hastens the development of the equilibrium state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.