Abstract

The formation of an adatom adsorption structure in dynamic force microscopy experiment is shown as a result of the spontaneous appearance of shear strain caused by external supercritical heating. This transition is described by the Kelvin-Voigt equation for a viscoelastic medium, the relaxation Landau-Khalatnikov equation for shear stress, and the relaxation equation for temperature. It is shown that these equations formally coincide with the synergetic Lorenz system, where the shear strain acts as the order parameter, the conjugate field is reduced to the stress, and the temperature is the control parameter. Within the adiabatic approximation, the steady-state values of these quantities are found. Taking into account the sample shear modulus vs strain dependence, the formation of the adatom adsorption configuration is described as the first-order transition. The critical temperature of the tip linearly increases with the growth of the effective value of the sample shear modulus and decreases with the growth of its typical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.