Abstract

The concept of smart manufacturing has attracted huge attention in the last years as an answer to the increasing complexity, heterogeneity, and dynamism of manufacturing ecosystems. This vision embraces the notion of autonomous and self-organized elements, capable of self-management and self-decision-making under a context-aware and intelligent infrastructure. While dealing with dynamic and uncertain environments, these solutions are also contributing to generating social impact and introducing sustainability into the industrial equation thanks to the development of task-specific resources that can be easily adapted, re-used, and shared. A lot of research under the context of self-organization in smart manufacturing has been produced in the last decade considering different methodologies and developed under different contexts. Most of these works are still in the conceptual or experimental stage and have been developed under different application scenarios. Thus, it is necessary to evaluate their design principles and potentiate their results. The objective of this paper is threefold. First, to introduce the main ideas behind self-organization in smart manufacturing. Then, through a systematic literature review, describe the current status in terms of technological and implementation details, mechanisms used, and some of the potential future research directions. Finally, the presentation of an outlook that summarizes the main results of this work and their interrelation to facilitate the development of self-organized manufacturing solutions. By providing a holistic overview of the field, we expect that this work can be used by academics and practitioners as a guide to generate awareness of possible requirements, industrial challenges, and opportunities that future self-organizing solutions can have towards a smart manufacturing transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.