Abstract

In this study, we sought to develop a self-navigation strategy for improving the reconstruction of diffusion weighted 3D multishot echo planar imaging (EPI). We propose a method for extracting the phase correction information from the acquisition itself, eliminating the need for a 2D navigator, further accelerating the acquisition. In-vivo acquisitions at 3T with 0.9 mm and 1.5 mm isotropic resolutions were used to evaluate the performance of the self-navigation strategy. Sensitivity to motion was tested using a large difference in pitch position of the head. Using a multishell diffusion weighted acquisition, tractography results were obtained at (0.9mm)3 to validate the quality with conventional acquisition. The use of 3D multislab EPI with self-navigation enables 3D diffusion-weighted spin echo EPI acquisitions that have the same efficiency as 2D single-shot acquisition. For matched acquisition time the image signal-to-noise ratio (SNR) between 3D and 2D acquisition is shown to be comparable for whole-brain coverage with (1.5mm)3 resolution and for (0.9mm)3 resolution the 3D acquisition has higher SNR than what can be obtained with 2D acquisitions using current state-of-art multiband techniques. The self-navigation technique was shown to be stable under inter-volume motion. In tractography analysis, the higher resolution afforded by our technique enabled clear delineation of the tapetum and posterior corona radiata. The proposed self-navigation approach utilized a self-consistent phase in 3D diffusion weighted acquisitions. Its efficiency and stability were demonstrated for a plurality of common acquisitions. The proposed self-navigation approach allows for faster acquisition of 3D multishot EPI desirable for large field of view and/or higher resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call