Abstract

Lipid-based systems such as self-nanoemulsifying drug delivery systems (SNEDDS) have resurged the eminence of nanoemulsions and offer many useful drug delivery opportunities. In the modern drug discovery era, there is a constant increase in the number of poorly soluble new chemical entities that suffer from poor and erratic bioavailability problems. The oral route possesses some major disadvantages, such as lack of constant drug levels in plasma, firstpass metabolism, which results in poor bioavailability. To address these problems, various lipidbased therapeutic systems are available from which self-enanoemulsifying systems have the potential to increase the bioavailability of poorly soluble drugs. SNEDDS is the isotropic mixture of oils, surfactant, and co-surfactant having droplet size in the range of 100-200 nm, which spontaneously emulsifies when it contacts with aqueous media in gastrointestinal (G.I) fluid. Various preparative methods are available for SNEDDS, such as high-pressure homogenizer, microfluidization, sonication, phase inversion, and shear state methods. These methods show favorable benefits in drug delivery. Self-nanoemulsifying drug delivery system possesses some disadvantages like precipitation of drug in G.I fluid or possible drug leaving in the capsule dosage form due to incompatibility issues, which can be overcome by more advanced techniques like supersaturated SNEDDS containing a precipitation inhibitor or Solid SNEDDS. These areformulated either through spray drying or using a solid carrier. The lipid-based nanocarrier (SNEDDS) plays a significant role in drug delivery to overcome the poor solubility and oral bioavailability. This review highlights the elaborative aspects of the diverse advantages of SNEDDS based formulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call