Abstract

Huperzine A (Hup-A) is a poorly water-soluble drug with low oral bioavailability. A self-microemulsifying drug delivery system (SMEDDS) was used to enhance the oral bioavailability and lymphatic uptake and transport of Hup-A. A single-pass intestinal perfusion (SPIP) technique and a chylomicron flow-blocking approach were used to study its intestinal absorption, mesenteric lymph node distribution and intestinal lymphatic uptake. The value of the area under the plasma concentration–time curve (AUC) of Hup-A SMEDDS was significantly higher than that of a Hup-A suspension (P<0.01). The absorption rate constant (Ka) and the apparent permeability coefficient (Papp) for Hup-A in different parts of the intestine suggested a passive transport mechanism, and the values of Ka and Papp of Hup-A SMEDDS in the ileum were much higher than those in other intestinal segments. The determination of Hup-A concentration in mesenteric lymph nodes can be used to explain the intestinal lymphatic absorption of Hup-A SMEDDS. For Hup-A SMEDDS, the values of AUC and maximum plasma concentration (Cmax) of the blocking model were significantly lower than those of the control model (P<0.05). The proportion of lymphatic transport of Hup-A SMEDDS and Hup-A suspension were about 40% and 5%, respectively, suggesting that SMEDDS can significantly improve the intestinal lymphatic uptake and transport of Hup-A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call