Abstract

Tribology studies in argon of nuclear graphite previously degassed at 600 °C show lower friction and wear at 600 °C than at room-temperature: the COF decreases from 0.55(14) to 0.33(5) and the specific wear rate decreases from 0.4(3) to 0.06(3) μg/Nm. Microstructural characterization of the wear spots via digital, polarized, and electron microscopy and Raman spectroscopy suggests formation of a Tribo-film formed by fracture perpendicular to the basal planes that exhibits crystallite alignment. The improved self-lubrication at high temperature results from the presence of a thicker and more continuous Tribo-film, attributed to the increase with temperature in the tensile strength and in the anisotropy of the chemical reactivity of graphite crystallites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.