Abstract
Beyond a pure mathematical interest, q-deformation is promising for the modeling and interpretation of various physical phenomena. In this paper, we numerically investigate the existence and properties of the self-localized soliton solutions of the nonlinear Schrödinger equation (NLSE) with a q-deformed Rosen–Morse potential. By implementing a Petviashvili method (PM), we obtain the self-localized one and two soliton solutions of the NLSE with a q-deformed Rosen–Morse potential. In order to investigate the temporal behavior and stabilities of these solitons, we implement a Fourier spectral method with a 4th order Runge–Kutta time integrator. We observe that the self-localized one and two solitons are stable and remain bounded with a pulsating behavior and minor changes in the sidelobes of the soliton waveform. Additionally, we investigate the stability and robustness of these solitons under noisy perturbations. A sinusoidal monochromatic wave field modeled within the frame of the NLSE with a q-deformed Rosen–Morse potential turns into a chaotic wavefield and exhibits rogue oscillations due to modulation instability triggered by noise, however, the self-localized solitons of the NLSE with a q-deformed Rosen–Morse potential are stable and robust under the effect of noise. We also show that soliton profiles can be reconstructed after a denoising process performed using a Savitzky–Golay filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.