Abstract

The adsorption of single polyacrylic acid (PAAc) molecules was investigated on stepped hydroxide-stabilized polar ZnO(0001)-Zn surfaces using atomic force microscope (AFM) topography and force distance spectroscopy. Stepped surfaces of ZnO(0001)-Zn were prepared by a wet chemical etching procedure and PAAc molecules were adsorbed from aqueous NaClO(4) solutions. AFM single molecule topography studies could be utilized to show that polyacrylic acid molecules specifically adsorb on the non-polar (10-10) step edge faces at low ionic strengths. The radius of gyration of the dissolved PAAc in aqueous solution was measured by means of static light scattering experiments yielding a radius of gyration of R(g)=136 nm at pH 7.4 in 50 mM NaClO(4)/NaOH solution, which is in good agreement with the size of the adsorbed PAAc molecules as measured using AFM. The obtained results could be rationalized in terms of binding-site configurations at step edges and the effect of the chemical environment on both local electric double layer charge and molecular conformation of the PAAc molecules. The point of zero charge of the ZnO(10-10) surface was measured with chemical force microscopy to be pH(PZC)=10.2 ± 0.2. The specific adsorption of polyacrylic acid at non-polar ZnO step-edges can be explained by coordinative bonds formed between the carboxylic acid group and the Zn-surface atoms. On the hydroxide stabilized polar surface only weak hydrogen bonds can be formed in addition to van-der-Waals forces. Thus a "diffusion and trapping" mechanism keeps the adsorbed PAAc molecules mobile on the ZnO(0001)-Zn surface terraces due to small interaction forces until they are trapped at the (10-10) step faces by stronger coordinative bonds from the carboxylic groups to zinc atoms located in the first atomic layer of the crystal structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.