Abstract

We consider self-localization of a small number of Bose particles immersed in a large homogeneous superfluid mixture of fermions in three and one dimensional spaces. Bosons distort the density of surrounding fermions and create a potential well where they can form a bound state analogous to a small polaron state. In the three dimensional volume we observe the self-localization for repulsive interactions between bosons and fermions. In the one dimensional case bosons self-localize as well as for attractive interactions forming, together with a pair of fermions at the bottom of the Fermi sea, a vector soliton. We analyze also thermal effects and show that small non-zero temperature affects the pairing function of the Fermi-subsystem and has little influence on the self-localization phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.