Abstract

Most electronics consist of functional thin films with tens of nanometer thicknesses. It is usually challenging to control the growth of these thin films using conventional solution-based approaches. Nanoadditive manufacturing, a method to deposit electronically desired molecules, polymers, or nanomaterials in a layer-by-layer (LbL) fashion, has emerged as a promising technique for the precise control of film growth and device fabrication. Here, basic principles of nanoadditive manufacturing approaches with self-limiting characteristics are summarized with a particular focus on Langmuir-Blodgett assembly and LbL assembly. Additively manufactured electronic thin films with properties of conductors, semiconductors, and dielectrics are reviewed, followed by a discussion of their application in various electronics, such as field-effect transistors, sensors, memory devices, photodetectors, light-emitting diodes, and electrochromic devices. Finally, challenges and future developments of these approaches are proposed. The resulting analysis reveals promising opportunities of nanoadditive manufacturing for the solution-based fabrication of electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call