Abstract

In this article, we investigate the self-learning robust control synthesis and tracking design of general uncertain dynamical systems. Based on the adaptive critic learning, the robust stabilization method is developed with the help of conducting problem transformation. In addition, by considering the optimal control solution with a discounted cost function, the established method is extended to address the robust trajectory tracking design problem. The Lyapunov stability analysis is also conducted for proving the robustness of the related control plants. Finally, the simulation verification with the three case studies is provided in terms of robust stabilization and trajectory tracking, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.