Abstract
In this paper, experimental work is supported by multi-scale numerical modeling to investigate nanomechanical response of pristine and ion irradiated with Fe2+ ions with energy 5 MeV high purity iron specimens by nanoindentation and Electron Backscatter Diffraction. The appearance of a sudden displacement burst that is observed during the loading process in the load–displacement curves is connected with increased shear stress in a small subsurface volume due to dislocation slip activation and mobilization of pre-existing dislocations by irradiation. The molecular dynamics (MD) and 3D-discrete dislocation dynamics (3D-DDD) simulations are applied to model geometrically necessary dislocations (GNDs) nucleation mechanisms at early stages of nanoindentation test; providing an insight to the mechanical response of the material and its plastic instability and are in a qualitative agreement with GNDs density mapping images. Finally, we noted that dislocations and defects nucleated are responsible the material hardness increase, as observed in recorded load–displacement curves and pop-ins analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.