Abstract
Narrow-linewidth yet tunable laser oscillators are one of the most important tools for precision metrology, optical atomic clocks, sensing, and quantum computing. Commonly used tunable coherent oscillators are based on stimulated emission or stimulated Brillouin scattering; as a result, the operating wavelength band is limited by the gain media. Based on nonlinear optical gain, optical parametric oscillators (OPOs) enable coherent signal generation within the whole transparency window of the medium used. However, the demonstration of OPO-based Hertz-level linewidth and tunable oscillators has remained elusive. Here, we present a tunable coherent oscillator based on a multimode coherent OPO in a high-Q microresonator, i.e., a microcomb. Single-mode coherent oscillation is realized through self-injection locking (SIL) of one selected comb line. We achieve coarse tuning up to 20 nm and an intrinsic linewidth down to sub-Hertz level, which is three orders of magnitude lower than the pump. Furthermore, we demonstrate that this scheme results in the repetition rate stabilization of the microcomb. These results open exciting possibilities for generating tunable coherent radiation where stimulated emission materials are difficult to obtain, and the stabilization of microcomb sources beyond the limits imposed by the thermorefractive noise in the cavity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.