Abstract
We discover and theoretically explore self-induced transparency quadratic solitons (SIT-QS) supported by the media with quadratic optical nonlinearities, doped with resonant impurities. The fundamental frequency of input pulses is assumed to be close to the impurity resonance. We envision an ensemble of inhomogeneously broadened semiconductor quantum dots (QD) in the strong confinement regime grown on a substrate with a quadratic nonlinearity to be a promising candidate for the laboratory realization of SIT-QS. We also examine the influence of inhomogeneous broadening as well as wave number and group-velocity mismatches on the salient properties of the introduced solitons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.