Abstract

Self-induced transparency mode locking (or coherent mode locking, CML), which is based on intracavity self-induced transparency soliton dynamics, potentially allows achievement of nearly single-cycle intracavity pulse durations, much below the phase relaxation time T2 in a laser which, despite having great promise, has not yet been realized experimentally. We develop a diagram technique which allows us to predict the main features of CML regimes in a generic two-section laser far from the single-cycle limit. We show that CML can arise directly at the first laser threshold if the phase relaxation time is large enough. Furthermore, we discuss the stability of the corresponding mapping. We also predict the existence of "super-CML regimes," with a pulse coupled to several Rabi oscillations in the nonlinear medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.