Abstract
A minimal Cantor system is said to be self-induced whenever it is conjugate to one of its induced systems. Substitution subshifts and some odometers are classical examples, and we show that these are the only examples in the equicontinuous or expansive case. Nevertheless, we exhibit a zero entropy self-induced system that is neither equicontinuous nor expansive. We also provide non-uniquely ergodic self-induced systems with infinite entropy. Moreover, we give a characterization of self-induced minimal Cantor systems in terms of substitutions on finite or infinite alphabets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.