Abstract
Key neuronal functions have been successfully replicated in various hardware systems. Noticeable examples are neuronal networks constructed from memristors, which emulate complex electrochemical biological dynamics such as the efficacy and plasticity of a neuron. Neurons are highly active cells, communicating with chemical and electrical stimuli, but also emit light. These so-called biophotons are suspected to be a complementary vehicle to transport information across the brain. Here, we show that a memristor also releases photons during its operation akin to the production of neuronal light. Critical attributes of biophotons, such as self-generation, stochasticity, spectral coverage, sparsity, and correlation with the neuron's electrical activity, are replicated by our solid-state approach. Importantly, our time-resolved analysis of the correlated current transport and photon activity shows that emission takes place within a nanometer-sized active area and relies on electrically induced single-to-few active electroluminescent centers excited with moderate voltage (<3 V). Our findings further extend the emulating capability of a memristor to encompass neuronal optical activity and allow to construct memristive atomic-scale devices capable of handling simultaneously electrons and photons as information carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.