Abstract

We study the emergence of Bose glass phases in self sustained bosonic quasicrystals induced by a pair interaction between particles of Lifshitz-Petrich type. By using a mean-field variational method designed in momentum space as well as Gross–Pitaevskii simulations we determine the phase diagram of the model. The study of the local and global superfluid fraction allows the identification of supersolid, super quasicrystal, Bose glass and insulating phases. The Bose glass phase emerges as a quasicrystal phase in which the global superfluidity is essentially zero, while the local superfluidity remains finite in certain ring structures of the quasicrystalline pattern. Furthermore, we perform continuous space Path Integral Monte Carlo simulations for a case in which the interaction between particles stabilizes a quasicrystal phase. Our results show that as the strength of the interaction between particles is increased the system undergoes a sequence of states consistent with the super quasicrystal, Bose glass, and quasicrystal insulator thermodynamic phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.