Abstract

We fabricated a novel single molecule nanosensor by integrating a solid-state nanopore and a double nanohole nanoaperture. The nanosensor employs Self-Induced Back-Action (SIBA) for optical trapping and enables SIBA-Actuated Nanopore Electrophoresis (SANE) for concurrent acquisition of bimodal optical and electrical signatures of molecular interactions. This work describes how to fabricate and use the SANE sensor to quantify antibody-ligand interactions. We describe how to analyze the bimodal optical-electrical data to improve upon the discrimination of antibody and ligand versus bound complex compared to electrical measurements alone. Example results for specific interaction detection are described for T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting Major Histocompatibility Complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells. We also describe how to analyze the bimodal optical-electrical data to discriminate between specific and non-specific interactions between antibodies and ligands. Example results for non-specific interactions are shown for cancer-irrelevant TCRmAbs targeting the same pMHCs, as a control. These example results demonstrate the utility of the SANE sensor as a potential screening tool for ligand targets in cancer immunotherapy, though we believe that its potential uses are much broader.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call