Abstract

Yellow mustard (Sinapis alba) has a sporophytic self-incompatibility reproduction system. Genetically stable self-incompatible (SI) and self-compatible (SC) inbred lines have recently been developed in this crop. Understanding the S haplotype of different inbred lines and the inheritance of the self-(in)compatibility (SI/SC) trait is very important for breeding purposes. In this study, we used the S-locus gene-specific primers in Brassica rapa and Brassica oleracea to clone yellow mustard S-locus genes of SI lines Y514 and Y1130 and SC lines Y1499 and Y1501. The PCR amplification results and DNA sequences of the S-locus genes revealed that Y514 carried the class I S haplotype, while Y1130, Y1499, and Y1501 had the class II S haplotype. The results of our genetic studies indicated that self-incompatibility was dominant over self-compatibility and controlled by a one-gene locus in the two crosses of Y514 × Y1499 and Y1130 × Y1501. Of the five S-locus gene polymorphic primer pairs, Sal-SLGI and Sal-SRKI each generated one dominant marker for the SI phenotype of Y514; Sal-SLGII and Sal-SRKII produced dominant marker(s) for the SC phenotype of Y1501 and Y1499; Sal-SP11II generated one dominant marker for Y1130. These markers co-segregated with the SI/SC phenotype in the F2 populations of the two crosses. In addition, co-dominant markers were developed by mixing the two polymorphic primer pairs specific for each parent in the multiplex PCR, which allowed zygosity to be determined in the F2 populations. The SI/SC allele-specific markers have proven to be very useful for the selection of the desirable SC genotypes in our yellow mustard breeding program.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-013-9943-8) contains supplementary material, which is available to authorized users.

Highlights

  • The tribe Brassiceae comprises many self-incompatible (SI) species, such as Brassica rapa, Brassica oleracea, Raphanus sativus, and Sinapis alba

  • Inheritance of the SI/SC trait was studied in the two crosses of Y514 9 Y1499 and Y1130 9 Y1501

  • A 100 bp it is possible that the S haplotype of Y1130, Y1499, and Y1501 in yellow mustard, S-60 in B. rapa, and S-15 in B. oleracea have the same evolutionary origin

Read more

Summary

Introduction

The tribe Brassiceae comprises many self-incompatible (SI) species, such as Brassica rapa, Brassica oleracea, Raphanus sativus, and Sinapis alba. Many genetic and molecular studies have been carried out on the self-(in)compatibility (SI/SC) mechanism in B. rapa and B. oleracea. As meiotic recombination between the three genes of the S locus seldom occurs, a set of alleles of SRK, SLG, and SP11, termed as the S haplotype, is inherited by the progeny. Class I S haplotypes are generally dominant over class II S haplotypes and prevalent in B. oleracea and B. rapa (Nasrallah and Nasrallah 1993; Sato et al 2006). Molecular studies have revealed that the DNA sequences of SLG genes share a higher degree of similarity within the class I S haplotypes than those between class I and class II types (Nasrallah et al 1991)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call