Abstract

The direct imaging of time-evolving molecular charge densities on atomistic scale and at femtosecond resolution has long been an elusive task. In this theoretical study, we propose a self-heterodyne electron diffraction technique based on single electron pulses. The electron is split into two beams, one passes through the sample and its interference with the second beam produces a heterodyne diffraction signal that images the charge density. Application to probing the ultrafast electronic dynamics in Mg-phthalocyanine demonstrates its potential for imaging chemical dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.