Abstract

The increase in temperature in compost piles/landfill sites due to micro-organisms undergoing exothermic reactions is modelled. A simplified model is considered in which only biological self-heating is present. The heat release rate due to biological activity is modelled by a function which is a monotonic increasing function of temperature over the range 0 ⩽ T ⩽ a , whilst for T ⩾ a it is a monotone decreasing function of temperature. This functional dependence represents the fact that micro-organisms die or become dormant at high temperatures. The bifurcation behaviour is investigated for 1-d slab and 2-d rectangular slab geometries. In both cases there are two generic steady-state diagrams including one in which the temperature–response curve is the standard S-shaped curve familiar from combustion problems. Thus biological self-heating can cause elevated temperature raises due to jumps in the steady temperature. This problem is used to test a recently developed semi-analytical technique. For the 2-d problem a four-term expansion is found to give highly accurate results—the error of the semi-analytical solution is much smaller than the error due to uncertainty in parameter values. We conclude that the semi-analytical technique is a very promising method for the investigation of bifurcations in spatially distributed systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.