Abstract

In the wood flooring sector, good surface mechanical properties, such as abrasion and scratch resistance, are prerequisite. Surface wood protection is provided by finishing systems. Despite coating improvement, scratches formation on wood flooring is unavoidable. A new approach to increase service life is to confer the self-healing property to the finishing system. The most common coatings used for prefinished wood flooring are acrylate UV curable 100% solids coatings. They usually have good mechanical properties and high cross-linking density. The objective of this study was to develop and evaluate an intrinsic self-healing formulation, which is applicable to wood flooring. For this purpose, acrylate formulations were developed with monomers and oligomers carrying hydroxyl groups. To meet the requirements of wood application, hardness, and polymerization conversion of coatings were evaluated. König pendulum damping tests provide information on coating hardness and flexibility. Results around 80 oscillations is acceptable for UV curable wood sealer. The chemical composition was studied by FT-IR spectroscopy while dynamical mechanical analysis (DMA) was performed to determine glass transition temperature and cross-linking density. The self-healing behavior was evaluated by gloss and scratch depth measurements. The formulation’s composition impacted the hydrogen binding quantity, the conversion, the Tg and the cross-linking density. The (hydroxyethyl)methacrylate (HEMA) monomer provided self-healing and acrylated allophanate oligomer allowed self-healing and cross-linking. This study demonstrated that it is possible to combine high cross-linking density and self-healing property, using components with low steric hindrance.

Highlights

  • One of the main challenges of interior wood products is to sustain mechanical solicitation causing scratches

  • This paper presents the development of intrinsic self-healing acrylate UV curable coatings adapted to the wood industry

  • UV curable acrylate coatings with self-healing behavior based on hydrogen bonding wereIn developed

Read more

Summary

Introduction

One of the main challenges of interior wood products is to sustain mechanical solicitation causing scratches. To maintain good aesthetics of wooden planks over their entire service life, the development of more efficient finishing systems is required. The level of protection needed depends on the final application. In the case of wood flooring, high mechanical resistance is essential. To protect prefinished wood flooring, ultra-violet curable acrylate coatings 100% solids are used. Even if coatings are increasingly performant, scratches formation is unavoidable, especially for soft substrates such as wood.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call