Abstract
Benefiting from the associative exchange reaction, vitrimers could be deformed to various shapes while maintaining the integrity of the network, thus being regarded as promising candidates for shape memory polymers. However, it is still a challenge to design the highly desired smart electronic devices with triple and multishape memory performances through a facile method. Here, a novel dual-cross-linked poly(acrylonitrile-co-butyl acrylate-co-hydroxyethyl methacrylate-co-zinc methacrylate) (Zn-PABHM) copolymer was developed via a facile and one-pot free radical polymerization strategy. Ionic cross-linking, the transcarbamoylation reaction, and glass transition were used to fix the permanent shape and two temporary shapes of the obtained ionomer vitrimer, respectively. The thermomechanical and stress relaxation performances of Zn-PABHM vitrimer can be customized by tuning the proportion of the chemical cross-linking and physical cross-linking knots. Furthermore, the Zn-PABHM was employed to construct a shape memory triboelectric nanogenerator, which demonstrates distinctive performance and tunable electrical outputs (37.4-96.0 V) due to variable contact areas enabled by triple shape memory effects. Consequently, the triple-shape memory ionomer vitrimer obtained via a facile and one-pot synthetic strategy has great potential in smart multifunctional electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.