Abstract

Poor room-temperature ionic conductivities and narrow electrochemical stable windows severely hinder the application of conventional poly(ethylene oxide)-based (PEO-based) solid polymer electrolytes (SPEs) for high-energy-density lithium metal batteries (LMBs). Herein, we designed and synthesized a PEO-based self-healing solid polymer electrolyte (SHSPE) via dynamically cross-linked imine bonds for safe, flexible solid LMBs. The constructed dynamic networks endow this SPE with fascinating intrinsic self-healing ability and excellent mechanical properties (extensibility > 500% and stress >130 kPa). More importantly, this SHSPE exhibits ultrahigh ionic conductivity (7.48 × 10-4 S cm-1 at 25 °C) and wide ESW (5.0 V vs Li/Li+). As a result, Li||Li symmetrical cells with the SHSPE showed reliable stability in a >1200 h cycling test under room temperature. The assembled Li|SHSPE|LiFePO4 cell maintained a discharge capacity of 126.4 mAh g-1 after 300 cycles (0.1C, 27 °C). This work highlights a promising strategy for next-generation room-temperature solid-state LMBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.