Abstract

Adhesive and self-healing elastomers are urgently needed for their convenience and intelligence in biological medicine, flexible electronics, intelligent residential systems, etc. However, their inevitable use in harsh environments results in further enhancement requirements of the structure and performance of adhesive and self-healing elastomers. Herein, a novel self-healing and high-adhesion silicone elastomer was designed by the synergistic effect of multiple dynamic bonds. It revealed excellent stretchability (368%) and self-healing properties at room temperature (98.1%, 5 h) and in a water environment (96.4% for 5 h). Meanwhile, the resultant silicone elastomer exhibited high adhesion to metal and nonmetal and showed stable adhesion in harsh environments, such as under acidic (pH 1) and alkaline (pH 12) environments, salt water, petroleum ether, water, etc. Furthermore, it was applied as a shatter-proof protective layer and a rust-proof coating, proving its significant potential in intelligent residential system applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.