Abstract

Strain sensors with high sensitivity, long-term durability, and stretchability are required for flexible and wearable electronic devices. This paper reports a bilayer strain sensor consisting of carboxyl-functionalized carbon nanotubes (CNTs) and ionically crosslinked polysiloxane substrates based on unsaturated acid-amine interactions. Vacuum filtration was adopted to prepare the CNT films (2.74-4.70 μm in thickness) onto the polysiloxane substrates to prepare stretchable conductive strain sensors. The strain sensor exhibited self-healing ability, self-adhesiveness, high sensitivity, linearity, low hysteresis, and long-term durability with a gauge factor of 33.99 at 55% strain. The sensitivity and linearity could be adjusted by the thickness of the CNT layer. A crack-related mechanism was proposed in which increasing the thickness of the CNT layer led to simultaneously enhanced sensitivity and linearity. Finally, we investigated the detection of human activities (bending/unbending of fingers or knees) and subtle motions (coughing and swallowing). The fabricated strain sensor succeeded in meeting various needs with satisfactory sensing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.