Abstract
Tough and transparent polyurethane networks with self‐healing capability at mild temperature conditions were successfully prepared in a 1‐pot procedure. The self‐healing ability of synthesized polyurethane comes from the covalent disulfide metathesis and non‐covalent H‐bonding. The mechanical testing indicates that disulfide metathesis reforms the covalent bonds on a longer time scale, while H‐bonding gives rise to a healing efficiency of around 46% in the early healing processing. The compromise between mechanical performance and healing capability is reached by tailoring the concentration of disulfide. The tensile strength of the sample with 100% self‐heal efficiency can get to 5.01 MPa, which can be explained by higher mobility of polymer chain under ambient temperature from creep testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.