Abstract

Self-healing of pores in Poly(lactic-co-glycolic acid)s (PLGA) plays an important role in the encapsulation and controlled release of drugs from PLGA microparticles. Despite the importance of this phenomenon, neither the mechanics of the deformation nor the material properties that control it have been fully studied. In this study, the material properties of PLGA have been characterized using mechanical tests, and a finite-element model has been developed to predict how pores heal. This model assumes that the healing process occurs by viscous flow resulting from the deviatoric stress field induced by the interaction between the surface curvature and the surface tension of the PLGA. The simulations, which incorporate measured material properties, show good agreement with experimental observations. However, annealing processes that occur over prolonged times increase the viscosity and slow the healing times of PLGA films at intermediate temperatures above the glass-transition temperature. These findings may be reasonably applied towards the prediction of healing processes in PLGA and in related biomaterials for important biomedical applications such as drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.