Abstract
This review is devoted to the description of methods for the self-healing of polymers, polymer composites, and coatings. The self-healing of damages that occur during the operation of the corresponding structures makes it possible to extend the service life of the latter, and in this case, the problem of saving non-renewable resources is simultaneously solved. Two strategies are considered: (a) creating reversible crosslinks in the thermoplastic and (b) introducing a healing agent into cracks. Bond exchange reactions in network polymers (a) proceed as a dissociative process, in which crosslinks are split into their constituent reactive fragments with subsequent regeneration, or as an associative process, the limiting stage of which is the interaction of the reactive end group and the crosslink. The latter process is implemented in vitrimers. Strategy (b) is associated with the use of containers (hollow glass fibers, capsules, microvessels) that burst under the action of a crack. Particular attention is paid to self-healing processes in metallopolymer systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.