Abstract

ABSTRACT To address the environmentally friendly issue of fire prevention and extinguishing materials in coal mines, a new biomass gel material was prepared using sodium carboxymethyl cellulose (CMC) as the matrix, ferro aluminum citrate (Fe-AlCit) as the cross-linking agent, and gluconic acid-δ-lactone (GDL) as the pH modifier. Through performance tests of gel micromorphology, thermal stability, viscoelasticity and yield stress, it was found that the CMC-3 gel material with a ratio of 2.5% CMC + 4% Fe-AlCit +2% GDL had a dense surface structure, good thermal stability and moderate viscosity, which was the most suitable for pipeline transport. A metal coordination bond favorable to the stability of CMC-3 gel is formed by the carboxylate ion in CMC and the double high-valent metal ions Fe3+ and Al3+ dissociated by Fe-AlCit. CMC-3 gel exhibits excellent fire prevention and extinguishing properties. The results of the programmed warming experiments showed that the inhibition rate of the coal sample treated with CMC-3 gel against CO and C2H4 gases reached 44.84% and 46.57% at 220°C, respectively, and the growth rate of the activation energy in the first and second stage reached 17.63% and 22.68%, respectively, which plays a significant inhibitory role. The infrared spectroscopy test showed that after adding CMC-3 gel, the content of -OH and Ar-C-O in the coal samples was reduced by 49.58% and 40.82%, respectively, and the content of stable C=C in the aromatics was increased by 6.14%, which effectively blocked the coal-oxygen chain reaction and reduced the tendency of coal spontaneous combustion. The thermogravimetric test showed that the characteristic temperature points of the coal sample treated with CMC-3 gel were all increased to different degrees. The fire extinguishing test showed that CMC-3 gel could significantly reduce the temperature of coal sample and extinguish the coal fire quickly. Moreover, the CMC-3 gel material also has excellent self-healing properties, which can self-repair the damaged network through the abundant reversible hydrogen and ionic bonds inside the gel in only 90 s. The study has certain guiding significance for the development of efficient and environmentally friendly self-healing mining fire prevention and extinguishing materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call