Abstract
The effectiveness of preploymer and 1,6-Hexamethylene diamine encapsulated by double-walled microcapsules based polyurea (PUA) was explored for healing the cracks generated in epoxy coatings. Double-walled microcapsules were systhesized by interfacial polymerization at the interface between the prepolymer droplets and the 1,6-Hexamethylene diamine droplets to form the polyurea shell. The effect of synthetic stirring speed on the morphology of the microcapsules was observed by scanning electronmicroscopy (SEM) and optical microscopy (OM). The chemical structure as well as the thermal properties and the core content were characterized by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analyzer (TGA) respectively. Electrochemical impedance spectroscopy (EIS) studies of the artificial scratched area showed that the coating containing 2wt% and 5wt% microcapsules could effectively prevent further corrosion of the coating with high corrosion resistance efficiencies of 61.61% and 45.99% after immersing for 144h in seawater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.