Abstract

This study presents a novel methodology to evaluate the self-healing capability of Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) designed to compare conventional concrete types. The procedure used combines loading reinforced concrete elements until a fixed strain level to have a comparable total crack opening. Afterwards, water penetration to chlorides is used as an indicator of permeability. This work compares autogenous healing efficiency of a conventional concrete, a high-performance concrete, and two types of UHPFRCs with and without 0.8% of a crystalline admixture (CA) by the binder weight. The results show that all UHPFRC specimens exhibited excellent autogenous healing, higher than conventional concretes for an equivalent total crack. The self-healing results depended greatly on the crack size and the fiber content. Additionally, UHPFRCs with CA obtained the lowest water permeability after promoting self-healing for one month in water immersion and presented almost complete healing against chloride penetration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call