Abstract

The Li dendrites introduced by the inhomogeneous Li-ion flux are the barriers to the commercialization of solid-state lithium metal batteries (LMBs). Increasing the Li+ transference number and homogenizing the Li+ flux are two effective strategies to solve the aforementioned issues. Herein, a flexible composite solid electrolyte (CSE) with an enhanced Li+ transference number, high ionic conductivity, and self-healing function was synthesized via a simple template method. Boron nitride (BN) nanosheets with high specific surface area and richly porous structure were used as the passive inorganic filler, homogenizing the Li+ flux and facilitating the Li+ transmission. The flexible and self-healing features of the CSE reduced the interface resistance and considerably prolonged their cycling life. By exploiting stress–strain curves before and after healing, along with physical characterizations, the self-healing efficiency was obtained and the dendrite suppress mechanisms at the electrode/CSE interface were discussed. Finally, the assembled LiFePO4/Li cell with optimized CSE exhibited impressive cycling performance and delivered a steady discharge capacity up to 152 mA h g−1 after 300 cycles at 0.1C. This universal strategy can be used in other emerging energy storage fields to boost high energy density and long cycling life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call