Abstract
Aiming at the prevention and control of acid mine drainage (AMD) at the source for a long-term period, herein, we report for the first time an active passivation coating with self-healing function to protect metal sulfide minerals from oxidation. Benzotriazole (BTA) inhibitor was loaded into halloysite nanotube (HNT) under vacuum condition and encapsulated by Cu-BTA complexes stoppers, and then the PropS-SH/HNT-BTA (PSHB) coating was prepared by mixing HNT-BTA nanoparticles with γ-mercaptopropyltrimethoxysilane (PropS-SH) to inhibit pyrite oxidation. The morphology and composition of HNT nanocontainers were characterized by SEM, TEM, EDS and FTIR methods. The loading capacity of BTA in HNT-BTA lumen was determined by TGA measurements. The releasing behavior of BTA under different pH conditions was investigated by UV–vis spectrophotometer and the release mechanism of BTA from HNT-BTA lumen was validated using Ritger-Peppas model. It was found that HNT-BTA could achieve stimulus-responsive release of BTA under acidic conditions. The passivation and self-healing properties of PSHB coating were studied by electrochemical measurements, chemical leaching tests and scratch tests. The experimental results showed that the novel PSHB coating had long-term oxidation resistance and active self-repair function after damage. Meanwhile, the passivation and self-healing mechanism of the PSHB coating is also introduced. It is thought that this study is helpful to bring new ideas in the field of metal sulfide mineral passivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.