Abstract

Biomaterials capable of achieving effective sealing and hemostasis at moist wounds are in high demand in the clinical management of acute hemorrhage. Bletilla striata polysaccharide (BSP), a natural polysaccharide renowned for its hemostatic properties, holds promising applications in biomedical fields. In this study, a dual-dynamic-bonds crosslinked hydrogel was synthesized via a facile one-pot method utilizing poly(vinyl alcohol) (PVA)-borax as a matrix system, followed by the incorporation of BSP and tannic acid (TA). Chemical borate ester bonds formed around borax, coupled with multiple physical hydrogen bonds between BSP and other components, enhanced the mechanical properties and rapid self-healing capabilities. The catechol moieties in TA endowed the hydrogel with excellent adhesive strength of 30.2 kPa on the surface of wet tissues and facilitated easy removal without residue. Benefiting from the synergistic effect of TA and the preservation of the intrinsic properties of BSP, the hydrogel exhibited outstanding biocompatibility, antibacterial, and antioxidant properties. Moreover, it effectively halted acute bleeding within 31.3 s, resulting in blood loss of 15.6 % of that of the untreated group. As a superior hemostatic adhesive, the hydrogel in this study is poised to offer a novel solution for addressing future acute hemorrhage, wound healing, and other biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.