Abstract

Designing stimuli-responsive drug delivery vehicles with higher drug loading capacity, sustained and targeted release of anti-cancer drugs and able to mitigate the shortcomings of traditional systems is need of hour. Herein, we designed stimuli-responsive, self-healable, and adhesive hydrogel through synergetic interaction between [Cho][Gly] (Choline-Glycine) and sodium alginate (SA). The hydrogel was formed as a result of non-covalent interaction between the components of the mixture forming the fibre kind morphology; confirmed through FTIR/computational analysis and SEM/AFM images. The hydrogel exhibited excellent mechanical strength, self-healing ability, adhesive character and most importantly; adjustable injectability. In vitro biocompatibility of the hydrogel was tested on HaCaT and MCF-7 cells, showing >92 % cell viability after 48 h. The hemolysis ratio (<4 %) of the hydrogel confirmed the blood compatibility of the hydrogel. When tested for drug-loading capacity, the hydrogel show 1500 times drug loading for the 5-fluorouracil (5-FU) against the SA based hydrogel. In vitro release data indicated that 5-FU have more preference towards the cancerous cell condition, i.e. acidic pH (>85 %), whereas the drug-loaded hydrogel successfully killed the MCF-7 and HeLa cell with a <IC50–1.92 mM value. The studied hydrogel paves way towards controlled and sustained delivery of anti-cancer drug for the treatment of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call