Abstract

It is shown numerically that Bose-Einstein condensates in optical lattices may be localized as self-induced waveguides and that these waveguides may take complex forms, including bends and X junctions. The waveguides are found to support continuous condensate flow, even around multiple right-angle bends. It is demonstrated that pulsed matter-wave transport may also occur along single-site waveguides in the form of solitons and that these solitons may propagate around bends and collide without change of shape or dependence on phase. A scheme based on single-site addressability techniques and the Kibble-Zurek mechanism is proposed for observing these effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.