Abstract
Nonlinear self-guided propagation of intense long-wave infrared (LWIR) laser pulses is of significant recent interest, as it promises high power transmission without beam breakup and multifilamentation. Central to self-guiding is the mechanism for the arrest of self-focusing collapse. Here, we show that discrete avalanche sites centered on submicron aerosols can arrest self-focusing, providing a new mechanism for self-guided propagation of moderate intensity LWIR pulses in outdoor environments. Our conclusions are supported by simulations of LWIR pulse propagation using an effective index approach that incorporates the time-resolved plasma dynamics of discrete avalanche breakdown sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.